Нетер, Эмми
Источник: | ||||||||
|
Ама́лия Э́мми Нётер | |
Amalie Emmy Noether | |
Род деятельности: |
математик |
---|---|
Дата рождения: |
23 марта 1882 |
Место рождения: |
Эрланген, Германия |
Гражданство: | |
Дата смерти: |
14 марта 1935 (52 года) |
Место смерти: |
Брин-Мор, Пенсильвания, США |
Ама́лия Э́мми Нётер (Amalie Emmy Noether, 1882, Эрланген, Германия — 1935, Брин-Мор, Пенсильвания, США) — немецкий математик.
Содержание |
Семья Нётер
Её отец Макс Нётер (1844—1921), родился в Эрлангене, был профессором математики в течение почти 50 лет. Он внес важный вклад в геометрию и был главным авторитетом алгебраической-геометрические школы в Германии. Он написал много статей по геометрии гиперпространства, абелевых и тета-функций.
Его сын Фриц Нётер (1884—1941) стал профессором прикладной математики в Высшей технической школе, Бреслау.
Ранние годы Эмми
Эмми была дочерью Макса Нётера, родилась и получила образование в Эрлангене. В 1900 году она получила сертификат на преподавание английского и французского языков в школах для девочек. Но захотела изучать математику в университете Эрлангена (ныне Университет Эрланген-Нюрнберг). В то время женщинам было позволено входить в аудиторию только с разрешения преподавателя. Она провела зиму 1903-04 гг., посещая лекции в университете Гёттингена, где преподавали математики Давид Гильберт, Феликс Клейн и Герман Минковский и астроном Карл Шварцшильд.
Она вернулась в Эрланген в 1904 году, когда там было разрешено женщинам быть полноправными студентами. Окончила этот университет. Она получила степень доктора философии в Эрлангене в 1907 году, защитив диссертацию об алгебраических инвариантах. Осталась в Эрлангене, где она работала без оплаты её собственных исследований и была ассистентом у отца, Макса Нётера.
В 1915 году Нётер был приглашена Гильбертом и Клейном в Гёттинген, считавшийся математической столицей мира. В 1916 г. переехала туда к ним. Вскоре, используя свои знания инвариантов, она помогала им исследовать математические аспекты недавно опубликованной Альбертом Эйнштейном общей теории относительности.
Будучи уже выдающимся математиком, Нетер как женщина не получила академической должности. Гильберт и Клейн убедили её остаться там, несмотря на яростные возражения некоторых членов профессорско-преподавательского состава против преподавания женщины в университете. До 1922 г. читала университетский курс алгебры вместо его официального руководителя Д. Гильберта (с его согласия).
В 1918 году Нётер обнаружила, что если лагранжиан (величина, характеризующая физическую систему, в механике это кинетическая минус потенциальная энергия) не изменяется, когда система координат изменяется, то есть величина, которая сохраняется. Например, когда лагранжиан зависит от изменения во времени, то энергия - сохраняемая величина. Это соотношение между тем, что известно как симметрии физической системы и её законами сохранения известно как теорема Нётер и оказалось ключевым результатом в теоретической физике.
Условия изменились при Веймарской республике, и Нётер получила официальный допуск к преподаванию в 1919 году. После долгого сопротивления университетского сообщества она была назначена «неофициальным» экстраординарным профессором Геттингенского университета. Этот статус не предоставлял академических прав и жалованья, но позволил создать группу учеников (их называли «мальчики Нетер»), из которой позднее вышли виднейшие алгебраисты. В 1920 году она опубликовала работы, сделавшие её одним из ведущих математиков.
В течение следующих шести лет ее исследования сосредоточены на общей теории идеалов (специальные подмножества колец), для которых её остаточная теорема - важная часть. На основе аксиоматики она разработала общую теорию идеалов для всех случаев. Её абстрактная теория помогла сблизить много важных математических разработок.
С 1927 научные интересы Нётер были сосредоточены на некоммутативных алгебрах (алгебры, в которых порядок перемножения чисел влияет на ответ), их линейных преобразований, и их применение к коммутативным числовым полям. Она построила теорию некоммутативных алгебр заново единой и чистой концептуально.
В сотрудничестве с Хельмутом Хассе и Рихардом Брауэром, она исследовала структуру некоммутативных алгебр и их применение к коммутативным полям с помощью перекрестного продукта (вид умножения, используется между двумя векторами). Важные работы этого периода: «Hyperkomplexe Grössen und Darstellungstheorie» (1929; «Гиперкомплексные системы счисления и их представление») и «Nichtkommutative Algebra» (1933; «Некоммутативная Алгебра»).
В дополнение к исследовательской и преподавательской работе, Нётер помогала отредактировать «Mathematische Annalen». С 1930 по 1933 год она была центром сильнейшей математической деятельности в Гёттингене.
В США
В 1933 г. Нетер как еврейка вынуждена была покинуть Германию и переехала в США, где преподавала в колледже Брин-Мор.
Когда нацисты пришли к власти в Германии в 1933 году, Нётер, как другие еврейские профессора в Гёттингене, была уволена. В октябре она уехала в США, чтобы стать приглашённым профессором математики в женском колледже Брин-Мор, штат Пенсильвания и лектором и исследователем в Институте перспективных исследований в Принстоне, Нью-Джерси. Она внезапно умерла от осложнений после операции на кисте яичника.
Эйнштейн писал вскоре после её смерти, что «Нётер была наиболее значимым творческим математическим гением, какой произошёл с начала высшего образования женщин».
Вклад в мировую науку
Нетер внесла решающий вклад в развитие современной алгебры. Ее труды положили начало новому направлению алгебраических исследований, известному под названием общей, или абстрактной алгебры (общая теория полей, колец, идеалов). Она была пионером в общей теории идей, а с 1926 и далее, инициировала достижения в некоммутативной алгебре.
Нетер принадлежит названная ее именем фундаментальная теорема теоретической физики (1918), которая установила связь между свойствами симметрии физической системы и законами сохранения и дала наиболее простой и универсальный метод получения законов сохранения в классической и квантовой физике, теории поля и т. д. Особенно важное значение имеет теорема Нетер в квантовой теории поля, где законы сохранения, вытекающие из существования определенной группы симметрии, обычно являются главным источником информации о свойствах исследуемых объектов.
Масштабы и значимость её вклада в математику не могут быть точно представлены только её научными трудами. Большая часть её работ появились в публикациях студентов и коллег. Много раз предложение или даже случайное замечание показывали её большую проницательность и стимулировали другого учёного завершить работу и усовершенствовать научное представление.
Литература
- Weyl, in: Scripta mathematica, 3 (1935), 201-20;
- Van der Waerden, in: Mathematische Annalen, 111 (1935), 469-76.
Источники
- КЕЭ, том 5, кол. 698—699
- NOETHER | Jewish Virtual Library
- Emmy Noether German mathematician — Encyclopædia Britannica
- Уведомление: Предварительной основой данной статьи была статья НЕТЕР Эмми в ЭЕЭ